Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Blood ; 138(9): 758-772, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33786575

RESUMO

Recirculation of chronic lymphocytic leukemia (CLL) cells between the peripheral blood and lymphoid niches plays a critical role in disease pathophysiology, and inhibiting this process is one of the major mechanisms of action for B-cell receptor (BCR) inhibitors such as ibrutinib and idelalisib. Migration is a complex process guided by chemokine receptors and integrins. However, it remains largely unknown how CLL cells integrate multiple migratory signals while balancing survival in the peripheral blood and the decision to return to immune niches. Our study provided evidence that CXCR4/CD5 intraclonal subpopulations can be used to study the regulation of migration of CLL cells. We performed RNA profiling of CXCR4dimCD5bright vs CXCR4brightCD5dim CLL cells and identified differential expression of dozens of molecules with a putative function in cell migration. GRB2-associated binding protein 1 (GAB1) positively regulated CLL cell homing capacity of CXCR4brightCD5dim cells. Gradual GAB1 accumulation in CLL cells outside immune niches was mediated by FoxO1-induced transcriptional GAB1 activation. Upregulation of GAB1 also played an important role in maintaining basal phosphatidylinositol 3-kinase (PI3K) activity and the "tonic" AKT phosphorylation required to sustain the survival of resting CLL B cells. This finding is important during ibrutinib therapy, because CLL cells induce the FoxO1-GAB1-pAKT axis, which represents an adaptation mechanism to the inability to home to immune niches. We have demonstrated that GAB1 can be targeted therapeutically by novel GAB1 inhibitors, alone or in combination with BTK inhibition. GAB1 inhibitors induce CLL cell apoptosis, impair cell migration, inhibit tonic or BCR-induced AKT phosphorylation, and block compensatory AKT activity during ibrutinib therapy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Movimento Celular , Proteína Forkhead Box O1/metabolismo , Regulação Leucêmica da Expressão Gênica , Leucemia Linfocítica Crônica de Células B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Regulação para Cima , Adenina/análogos & derivados , Adenina/farmacologia , Linhagem Celular Tumoral , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/patologia , Piperidinas/farmacologia
3.
Blood ; 137(18): 2481-2494, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33171493

RESUMO

B-cell receptor (BCR) signaling and T-cell interactions play a pivotal role in chronic lymphocytic leukemia (CLL) pathogenesis and disease aggressiveness. CLL cells can use microRNAs (miRNAs) and their targets to modulate microenvironmental interactions in the lymph node niches. To identify miRNA expression changes in the CLL microenvironment, we performed complex profiling of short noncoding RNAs in this context by comparing CXCR4/CD5 intraclonal cell subpopulations (CXCR4dimCD5bright vs CXCR4brightCD5dim cells). This identified dozens of differentially expressed miRNAs, including several that have previously been shown to modulate BCR signaling (miR-155, miR-150, and miR-22) but also other candidates for a role in microenvironmental interactions. Notably, all 3 miR-29 family members (miR-29a, miR-29b, miR-29c) were consistently down-modulated in the immune niches, and lower miR-29(a/b/c) levels associated with an increased relative responsiveness of CLL cells to BCR ligation and significantly shorter overall survival of CLL patients. We identified tumor necrosis factor receptor-associated factor 4 (TRAF4) as a novel direct target of miR-29s and revealed that higher TRAF4 levels increase CLL responsiveness to CD40 activation and downstream nuclear factor-κB (NF-κB) signaling. In CLL, BCR represses miR-29 expression via MYC, allowing for concurrent TRAF4 upregulation and stronger CD40-NF-κB signaling. This regulatory loop is disrupted by BCR inhibitors (bruton tyrosine kinase [BTK] inhibitor ibrutinib or phosphatidylinositol 3-kinase [PI3K] inhibitor idelalisib). In summary, we showed for the first time that a miRNA-dependent mechanism acts to activate CD40 signaling/T-cell interactions in a CLL microenvironment and described a novel miR-29-TRAF4-CD40 signaling axis modulated by BCR activity.


Assuntos
Adenina/análogos & derivados , Antígenos CD40/metabolismo , Regulação Neoplásica da Expressão Gênica , Leucemia Linfocítica Crônica de Células B/patologia , MicroRNAs/genética , Piperidinas/farmacologia , Proteínas Proto-Oncogênicas c-bcr/antagonistas & inibidores , Fator 4 Associado a Receptor de TNF/metabolismo , Adenina/farmacologia , Adulto , Idoso , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Antígenos CD40/genética , Feminino , Seguimentos , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Masculino , Pessoa de Meia-Idade , Prognóstico , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Taxa de Sobrevida , Fator 4 Associado a Receptor de TNF/genética , Células Tumorais Cultivadas
4.
Haematologica ; 105(6): 1494-1506, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32482755

RESUMO

The introduction of anti-CD20 monoclonal antibodies such as rituximab, ofatumumab, or obinutuzumab improved the therapy of B-cell malignancies even though the precise physiological role and regulation of CD20 remains unclear. Furthermore, CD20 expression is highly variable between different B-cell malignancies, patients with the same malignancy, and even between intraclonal subpopulations in an individual patient. Several epigenetic (EZH2, HDAC1/2, HDAC1/4, HDAC6, complex Sin3A-HDAC1) and transcription factors (USF, OCT1/2, PU.1, PiP, ELK1, ETS1, SP1, NFκB, FOXO1, CREM, SMAD2/3) regulating CD20 expression (encoded by MS4A1) have been characterized. CD20 is induced in the context of microenvironmental interactions by CXCR4/SDF1 (CXCL12) chemokine signaling and the molecular function of CD20 has been linked to the signaling propensity of B-cell receptor (BCR). CD20 has also been shown to interact with multiple other surface proteins on B cells (such as CD40, MHCII, CD53, CD81, CD82, and CBP). Current efforts to combine anti-CD20 monoclonal antibodies with BCR signaling inhibitors targeting BTK or PI3K (ibrutinib, acalabrutinib, idelalisib, duvelisib) or BH3-mimetics (venetoclax) lead to the necessity to better understand both the mechanisms of regulation and the biological functions of CD20. This is underscored by the observation that CD20 is decreased in response to the "BCR inhibitor" ibrutinib which largely prevents its successful combination with rituximab. Several small molecules (such as histone deacetylase inhibitors, DNA methyl-transferase inhibitors, aurora kinase A/B inhibitors, farnesyltransferase inhibitors, FOXO1 inhibitors, and bryostatin-1) are being tested to upregulate cell-surface CD20 levels and increase the efficacy of anti-CD20 monoclonal antibodies. Herein, we review the current understanding of CD20 function, and the mechanisms of its regulation in normal and malignant B cells, highlighting the therapeutic implications.


Assuntos
Antígenos CD20 , Leucemia Linfocítica Crônica de Células B , Anticorpos Monoclonais , Linfócitos B , Humanos , Pirimidinas , Rituximab
5.
Leukemia ; 33(2): 403-414, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30111844

RESUMO

The variable clinical course in chronic lymphocytic leukaemia (CLL) largely depends on p53 functionality and B-cell receptor (BCR) signalling propensity; however, it is unclear if there is any crosstalk between these pathways. We show that DNA damage response (DDR) activation leads to down-modulating the transcriptional factor FOXP1, which functions as a positive BCR signalling regulator and its high levels are associated with worse CLL prognosis. We identified microRNA (miRNA) miR-34a as the most prominently upregulated miRNA during DDR in CLL cells in vitro and in vivo during FCR therapy (fludarabine, cyclophosphamide, rituximab). MiR-34a induced by DDR activation and p53 stabilization potently represses FOXP1 expression by binding in its 3'-UTR. The low FOXP1 levels limit BCR signalling partially via derepressing BCR-inhibitory molecule CD22. We also show that low miR-34a levels can be used as a biomarker for worse response or shorter progression free survival in CLL patients treated with FCR chemoimmunotherapy, and shorter overall survival, irrespective of TP53 status. Additionally, we have developed a method for the absolute quantification of miR-34a copies and defined precise prognostic/predictive cutoffs. Overall, herein, we reveal for the first time that B cells limit their BCR signalling during DDR by down-modulating FOXP1 via DDR-p53/miR-34a axis.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/metabolismo , Dano ao DNA/efeitos dos fármacos , Fatores de Transcrição Forkhead/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , MicroRNAs/genética , Receptores de Antígenos de Linfócitos B/metabolismo , Proteínas Repressoras/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Ciclofosfamida/administração & dosagem , Dano ao DNA/genética , Feminino , Seguimentos , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Masculino , Pessoa de Meia-Idade , Prognóstico , Receptores de Antígenos de Linfócitos B/genética , Proteínas Repressoras/genética , Rituximab/administração & dosagem , Transdução de Sinais , Taxa de Sobrevida , Vidarabina/administração & dosagem , Vidarabina/análogos & derivados
6.
Blood ; 132(22): 2389-2400, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30213873

RESUMO

Follicular lymphoma (FL) is a common indolent B-cell malignancy with a variable clinical course. An unfavorable event in its course is histological transformation to a high-grade lymphoma, typically diffuse large B-cell lymphoma. Recent studies show that genetic aberrations of MYC or its overexpression are associated with FL transformation (tFL). However, the precise molecular mechanisms underlying tFL are unclear. Here we performed the first profiling of expression of microRNAs (miRNAs) in paired samples of FL and tFL and identified 5 miRNAs as being differentially expressed. We focused on one of these miRNAs, namely miR-150, which was uniformly downmodulated in all examined tFLs (∼3.5-fold), and observed that high levels of MYC are responsible for repressing miR-150 in tFL by binding in its upstream region. This MYC-mediated repression of miR-150 in B cells is not dependent on LIN28A/B proteins, which influence the maturation of miR-150 precursor (pri-miR-150) in myeloid cells. We also demonstrated that low miR-150 levels in tFL lead to upregulation of its target, namely FOXP1 protein, which is a known positive regulator of cell survival, as well as B-cell receptor and NF-κB signaling in malignant B cells. We revealed that low levels of miR-150 and high levels of its target, FOXP1, are associated with shorter overall survival in FL and suggest that miR-150 could serve as a good biomarker measurable in formalin-fixed paraffin-embedded tissue. Overall, our study demonstrates the role of the MYC/miR-150/FOXP1 axis in malignant B cells as a determinant of FL aggressiveness and its high-grade transformation.


Assuntos
Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica , Linfoma Folicular/genética , MicroRNAs/genética , Proteínas Repressoras/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Regulação para Baixo , Humanos , Linfoma Folicular/diagnóstico , Linfoma Folicular/patologia , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Prognóstico , Proteínas Proto-Oncogênicas c-myc/genética , Ativação Transcricional , Regulação para Cima
8.
Blood ; 128(12): 1609-13, 2016 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-27480113

RESUMO

Agents targeting B-cell receptor (BCR) signaling-associated kinases such as Bruton tyrosine kinase (BTK) or phosphatidylinositol 3-kinase can induce mobilization of neoplastic B cells from the lymphoid tissues into the blood, which makes them potentially ideal to combine with anti-CD20 monoclonal antibodies (such as rituximab, obinutuzumab, or ofatumumab) for treatment of B-cell lymphomas and chronic lymphocytic leukemia (CLL). Here we show that interactions between leukemia cells and stromal cells (HS-5) upregulate CD20 on CLL cells and that administering ibrutinib downmodulates CD20 (MS4A1) expression in vivo. We observed that CLL cells that have recently exited the lymph node microenvironment and moved into the peripheral blood (CXCR4(dim)CD5(bright) subpopulation) have higher cell surface levels of CD20 than the cells circulating in the bloodstream for a longer time (CXCR4(bright)CD5(dim) cells). We found that CD20 is directly upregulated by CXCR4 ligand stromal cell-derived factor 1 (SDF-1α, CXCL12) produced by stromal cells, and BTK-inhibitor ibrutinib and CXCR4-inhibitor plerixafor block SDF-1α-mediated CD20 upregulation. Ibrutinib also downmodulated Mcl1 levels in CLL cells in vivo and in coculture with stromal cells. Overall, our study provides a first detailed mechanistic explanation of CD20 expression regulation in the context of chemokine signaling and microenvironmental interactions, which may have important implications for microenvironment-targeting therapies.


Assuntos
Antígenos CD20/química , Quimiocina CXCL12/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Pirazóis/farmacologia , Pirimidinas/farmacologia , Receptores CXCR4/metabolismo , Adenina/análogos & derivados , Antígenos CD20/genética , Antígenos CD20/metabolismo , Quimiocina CXCL12/genética , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Piperidinas , Receptores CXCR4/genética , Transdução de Sinais , Células Tumorais Cultivadas , Regulação para Cima
9.
Oncol Rep ; 33(5): 2169-75, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25739012

RESUMO

Although methotrexate (MTX) is the most well-known antifolate included in many standard therapeutic regimens, substantial toxicity limits its wider use, particularly in pediatric oncology. Our study focused on a detailed analysis of MTX effects in cell lines derived from two types of pediatric solid tumors: medulloblastoma and osteosarcoma. The main aim of this study was to analyze the effects of treatment with MTX at concentrations comparable to MTX plasma levels in patients treated with high-dose or low-dose MTX. The results showed that treatment with MTX significantly decreased proliferation activity, inhibited the cell cycle at S-phase and induced apoptosis in Daoy and Saos-2 reference cell lines, which were found to be MTX-sensitive. Furthermore, no difference in these effects was observed following treatment with various doses of MTX ranging from 1 to 40 µM. These findings suggest the possibility of achieving the same outcome with the application of low-dose MTX, an extremely important result, particularly for clinical practice. Another important aspect of treatment with high-dose MTX in clinical practice is the administration of leucovorin (LV) as an antidote to reduce MTX toxicity in normal cells. For this reason, the combined application of MTX and LV was also included in our experiments; however, this application of MTX together with LV did not elicit any detectable effect. The expression analysis of genes involved in the mechanisms of resistance to MTX was a final component of our study, and the results helped us to elucidate the mechanisms of the various responses to MTX among the cell lines included in our study.


Assuntos
Neoplasias Ósseas , Neoplasias Cerebelares , Antagonistas do Ácido Fólico/administração & dosagem , Meduloblastoma , Metotrexato/administração & dosagem , Osteossarcoma , Neoplasias Ósseas/enzimologia , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Cerebelares/enzimologia , Neoplasias Cerebelares/genética , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/genética , Citometria de Fluxo , Humanos , Meduloblastoma/enzimologia , Meduloblastoma/genética , Osteossarcoma/enzimologia , Osteossarcoma/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tetra-Hidrofolato Desidrogenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...